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SUMMARY

Massively parallel finite element methods for large-scale computation of storm surges and tidal flows are
discussed here. The finite element computations, carried out using unstructured grids, are based on a three-step
explicit formulation and on an implicit space–time formulation. Parallel implementations of these unstructured
grid-based formulations are carried out on the Fujitsu Highly Parallel Computer AP1000 and on the Thinking
Machines CM-5. Simulations of the storm surge accompanying the Ise-Bay typhoon in 1959 and of the tidal flow
in Tokyo Bay serve as numerical examples. The impact of parallelization on this type of simulation is also
investigated. The present methods are shown to be useful and powerful tools for the analysis of storm surges and
tidal flows.# 1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Storm surges is a phenomenon in which the sea level in a near-shore rises significantly because of the
passage of a typhoon or low atmospheric pressure. This can cause enormous damage in major bays
and harbours. Tidal flows in ocean bays are less violent, yet their understanding is also important to
the design of shoreline and offshore structure. For the study of storm surge, computations were
carried out in the past by some of the present authors and also other researchers.1,2 Tidal flow
simulations were previously reported in References 3 and 4. The finite element method is a powerful
tool in such simulations, since it is applicable to complicated water and land configurations and is
able to represent such configurations accurately. In practical computations, especially in the case of
storm surge analysis, the computational domain is large and the computations need to be carried out
over long time periods. Therefore this type of problem becomes quite large-scale and it is essential to
use methods which are as efficient and fast as the available hardware allows.

In recent years, massively parallel finite element computations have been successfully applied to
several large-scale flow problems.3,5 These computations demonstrated the availability of a new level
of finite element capability to solve practical flow problems. With the need for a high-performance
computing environment to carry out simulations for practical problems in storm surge analysis, in this
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paperwe present and employ a parallel explicit finite element methodfor computations basedon
unstructured grids.Thefinite element computations arebasedon a three-step explicit formulation3 of
thegoverning equations.In thesecomputationswe usetheselective lumping techniquefor numerical
stabilization.Parallelimplementationof thisunstructured-grid-basedformulationis carriedouton the
Fujitsu Highly Parallel Computer AP1000. As a test problem, we carry out simulation of the storm
surgeaccompanying the Ise-Bay typhoon in 1959. The computed resultsare comparedwith the
observedresults. Theeffectof parallelization on theefficiencyof thecomputationsis alsoexamined.

Thecomputation of thesecond classof problems, involving tidal flows, is accomplishedherewith
a stabilized implicit finite elementmethodbasedon the conservation variables. This stabilization
methodis basedon the streamlineupwind=Petrov–Galerkin (SUPG) formulation for compressible
flows, which wasoriginally introducedin Reference6 for incompressible flows andin Reference7
for the Euler equations of compressibleflows. This methodology was later supplementedwith a
discontinuity-capturingtermin References8 and9 andthenextendedin References10 and11 to the
Navier–Stokes equations of compressible flows. The time-dependentgoverning equations are
discretizedusing a space–time formulation developedfor fixed domainsin References 12 and13 and
for deforming domains in Reference14. The present data-parallel implementation makes no
assumptionsaboutthe structure of the computational grid andis written for the Thinking Machines
CM-5 supercomputer.As a testproblem, simulation of the tidal flow in Tokyo Bay is carried out.

2. GOVERNING EQUATIONS

The stormsurgephenomenacanbemodelledusing theshallowwaterequations,which areobtained
from theconservation of momentumandmass,vertically integrated, assuming a hydrostatic pressure
distribution:

_ui � ujui;j � g�zÿ z0�;i �
�tb�i

r�h � z�
ÿ

�ts�i

r�h � z�
ÿ n�ui;j � uj;i�; j � 0; �1�

_z� ��h � z�ui�;i � 0; �2�

where ui is the meanhorizontal velocity, z is the water elevation, h is the water depth, g is the
gravitational acceleration, z0 is the increase in water elevationcorresponding to the atmospheric
pressure drop, �ts�i is the surfaceshearstress,�tb�i is the bottom shearstressand n is the eddy
viscosity. The increase z0 canbe given by Fujita’s formula15 as
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whereDp is the pressuredropat thecentreof the typhoon,r is the densityof fluid, r is the distance
from the centreof the typhoonandr0 is the radiusof the typhoon.

The surfaceshearstresscanbe given as

�ts�i � ragwi
p

�wkwk�; �4�

where ra is the densityof air, g is the dragcoefficient andwi is the wind velocity 10 m abovethe
watersurface.The wind velocity canbe evaluated using the expressions
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where Vg is thegradientwind velocity, V1 andV2 denotethevelocity of the typhoon,�x1�c and�x2�c
denote theposition of the typhoon, y is thegradientwind angle andR; C1 andC2 areconstants.The
gradient wind velocity is defineas
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where f is the Coriolis coefficient.
The bottomshearstresscanbe given as

�tb�i �
n2g

h1=3
ui
p

�ukuk�; �8�

where n is the Manning coefficient.

3. VARIA TIONAL FORMULATIONS

We present two finite element formulations of the shallow water equations which have been
implementedon parallel architectures.The first method is a three-step explicit methodfor fixed
domains.Thesecondmethodis animplicit stabilizedspace–timeformulation.Althoughtheexamples
presentedin this paperinvolve fixed domains only, the latter (space–time) formulation is seenasa
step towardssolvinganimportantclassof problems which involve deforming domains. With thetwo
formulations included in this section addressing different classesof problems,a cost=accuracy
comparisonis not performed;however, it is expected that the explicit methodfor a given time step
size will be more economical than the space–time formulation if the domain is fixed. The implicit
space–timeformulation, on theother hand,doesnot involve asmuch time stepsizerestriction (dueto
numerical stability) asthe explicit method.

3.1. Three-Step Explicit Finite ElementMethod

For the finite element spatial discretization of the governing equations the standard Galerkin
methodis used.The weakform of the governingequationscanthenbe written as

�
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where u*i andz* denote the weighting functionsand ti representsboundary terms.
Using the three-nodelinear triangular elementsfor the spatial discretization,the following finite

elementequations canbe obtained:
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Mab
_zb � Babigubi�hg � zg� � Cabgiubi�hg � zg� � 0: �12�
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The coefficient matrix canbe expressed as
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where F denotesthe shapefunction. The bottom stressterm is linearized and the water depth is
interpolatedusing linearinterpolation.

For discretization in time the three-stepexplicit time integration schemeis employed using the
Taylor seriesexpansion
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where F is anarbitrary function andDt is the time increment. Using theapproximate equation up to
third-orderaccuracy, the following three-stepscheme canbe obtained:16
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Equation(14) is equivalent to equation (13) andthe methodis referredto asthe three-stepTaylor–
Galerkin method.The stability limit of the methodis 1�5 times larger thanthat of the conventional
two-step scheme.4,17 Details of this methodaregiven in Reference3. Applying this schemeto the
finite element equations, the following discretizedequations in time canbe obtained:
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where superscript n denotesthe valuecomputedat the nth time point andDt is the time increment
between thenth andthe �n � 1�th step. Thecoefficient ML

ab
expresses thelumpedcoefficientandMS

ab

is the selective lumping coefficient given by

MS
ab � eML

ab � �1 ÿ e�Mab; �21�

where e is the selective lumping parameter.

3.2. Space–Time Implicit Finite ElementMethod

In the implicit implementation a stabilized space–time finite elementmethodis used.Using the
conservative variablesdefinedas
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where H � h � z, the variationalformulationof (1) and(2) is written as
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HereU* denotestheweighting function andthe integration takesplace over the space–timedomain
(or its subsetreferredto asslab) Qn, its lateralboundaryPn andits lower spatial boundaryOn. The
space–time terminology is explainedin moredetail in Reference18. Ai andKij are the coefficient
matricesof the advective–diffusivesystem, definedas
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R denotesthe right-hand-side vector
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andH is the natural boundary condition term definedon the subsetof the lateral boundary Pn. The
notation �. . .�

�

n and�. . .�ÿn indicate thevaluesof a discontinuous variable asthetime t approachesthe
temporal slabboundary tn from aboveandbelow respectively.

The first two left-hand-side termsand the entire right-handside of equation (22) constitute the
Galerkin form of the shallow water equations(1) and (2). The third term enforcesweakly the
continuity of the solution across the time levels tn. The fourth and fifth terms are the SUPG
stabilization and discontinuity-capturingtermsrespectively. For the derivation of the stabilization
coefficients t and d for multidimensional advection–diffusive systems seee.g. Reference11. The
stabilization termsare integrated over the interior of the space–time elementsQe

n.
The variablesand weighting functions are discretizedusing piecewise linear (in both spaceand

time) interpolation functions spacesfor all fields. The resultingnon-linearequation systemis solved
using theNewton–Raphsonalgorithm, whereateachNewton–Raphsonstep acoupledlinearequation
system is solvediterativelyusingthe GMRESupdatetechnique.

4. PARALLEL IMPLEMENTATION

For theexplicit algorithm a data-parallel implementationis performedon theFujitsu AP1000, which
is a distributed memory, highly parallel computer that supportsthe communication mechanism.
Figure 1 shows the configuration of the AP1000 system. The AP1000 consistsof 1024 processing
elementswhich are called cells, a Sunworkstation which is called the host and threeindependent
networkswhicharecalled theT-net,B-netandS-net.Eachcell possessesamemory of 16 MB. Using
1024 cells, the peak computational speed reaches 8�53 Gflops. The cells perform parallel
computation synchronizing all cells and transferring boundary node data to neighbouring cells.
The hostperformsinstitution of cells’ environment,creation of task,transferof dataandobservation
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of cells’ condition. All cells are connected by the T-net (torus network) for one-to-one
communication betweencells.Thehostandcellsareconnectedby theB-net (broadcastingnetwork)
for broadcastcommunication, distribution andcollection of dataandby the S-net(synchronization
network) for barriersynchronization.The communication andsynchronizationmentionedabovecan
be realizedusingthe vendor-supplied parallel library.19

To minimize the amount of interprocessorcommunication, the automatic mesh decomposer
presentedby Farhat20 is employed.Foreachsubdomain theprocessorassociatedwith thatsubdomain
carriesoutcomputationsindependently, exchangingonly thesubdomainboundary datawith theother
processors.

The finite elementequation canbe expressed as

�MX � F; �25�

where �M is the lumpedmassmatrix, X is the unknown vectorandF is the known vector.Figure2
shows anexample mesh,with thebrokenline denotingtheboundary of a subdomain. Elements (1)–
(4) belong to domain1 (processor 1) andelements(5) and(6) belongto subdomain 2 (processor2).
The unknown valuesX aresolvedby

X � F= �M �26�

No interprocessorcommunication is neededto compute the unknown valuesof a node which is
located in thesubdomain interior, suchasnodeA. However,in thecaseof nodeB, which is located
on theboundaryof subdomains,interprocessorcommunication is needed andthefollowingprocedure
is applied. First the following valuesarecomputedin eachprocessor:

MB1 � MB�3� � MB�4�; FB1 � FB�3� � FB�4� �processor 1�; �27�

MB2 � MB�5� � MB�6�; FB2 � FB�5� � FB�6� �processor 2�: �28�

Next thesevaluesaregatheredusingthecommunication library, thentheunknown valuesof nodeB
canbe obtained by

XB � �FB1 � FB2�=�
�MB1 �

�MB2�: �29�

Datatransferis performedat every time step (seeFigure 2). As the lumpedmassmatrix �M remains
constant throughoutall time step,the datatransferof that matrix is requiredonly once.

The implicit algorithmis implementedon theConnectionMachine CM-5. Similarly to theFujitsu
AP1000, theCM-5 is also adistributedmemory, parallel machine,with asinglepartitionsizeof up to

Figure1. AP1000system
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512 processing elements (PEs)anda Sunmultiprocessorhostmachine.The PEsareinterconnected
throughfat-treedata,control anddiagnosticnetworks.EachPEmanages32 MB of memory andhas
a peakprocessingspeedof 128 Mflops, for a total peakof over65 Gflops. As on theAP1000, highly
optimized communication utilit ies are available, grouped in the Connection Machine Scientific
Software Library (CMSSL). The implementation of the implicit algorithm described in Section3
follows closely the finite element implementationof the Navier–Stokesequations which havebeen
described in References 21 and22.

5. NUMERICAL EXAMPLES

As anapplicationof thethree-stepexplicit algorithm, simulationof thestormsurgein Ise-Bay,Japan
accompanyingthe Ise-Bay typhoonin 1959is carried out. This typhoon occurredon 22 September
1959 and was the greatest disaster ever to hit the Ise-Baydistrict. Over 5000 peoplewere killed
because of this storm surge.Figure 3 shows the configuration of the domain and the path of the
typhoon. Figure 4 shows the finite element discretization used.The total numbersof elements and
nodesare 206,977and 106,577 respectively. This mesh is designedto keep the element Courant
number constantin the entiredomain.23,24Figure 5 showsthe waterdepthdiagram.From Figures4

Figure2. Parallelimplementation

Figure3. Computational domainandpathof Ise-Baytyphoon
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Figure4. Finite elementdiscretization

Figure5. Waterdepthdiagram(contoursareevenlyspacedat 500 m intervals)
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and 5 it can be seenthat an appropriate meshin accordance with the variation in water depth is
realized.Figures6 and7 showthefinite element discretizationandwaterdepthdiagramaround Ise-
Bay respectively. A fine mesh which representsthegeometryaccurately is employed.Figure8 shows
themeshpartitioning for 512processors.Thetyphoon datasuchasits position, speedandpower are
given at 1 h intervals. Usingthese data,thewind velocity canbecomputed at everytime step.Linear
interpolation is used for the data interpolation. For the boundary condition the no-slip bound-
ary condition is applied to the coastline and the open-boundary condition is applied to the open
boundary. For the numerical condition the following data are used: n � 0�3; Al �

10 m2 sÿ1
; C1 � C2 � 0�6; R � 500 km; r0 � 60 km. The selectivelumping parameterandthe time

increment areassumedto be 0�9 and6 s respectively. Figure 9 showsthe pathof the typhoons;the
numeralsdenote thetime andpositionof thetyphoon. Figure10 shows thecomputed waterelevation

Figure6. Finite elementdiscretization aroundIse-Bay

Figure7. WaterdepthdiagramaroundIse-Bay(contoursareevenlyspacedat 10 m intervals)
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at times17:00and24:00. Figure 11 showsthe computedwaterelevation at 1 h intervals. It canbe
seenthat thewaterelevation variesaccording to the movementof the typhoon. Figure 12 shows the
computed current velocity at time 22:00 and the complicated flow pattern.Figure 13 shows the
comparisonof waterelevationbetween thecomputedandobservedresults25 atNagoya.It canbeseen
that the computed results are in good agreementwith the observed results.

Figure8. Meshpartitioningfor 512 processors

Figure9. Pathof typhoon
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In orderto checktheperformanceof theparallelization, threefinite elementmeshesareemployed:
mesh L with 206,977 elementsand106,577nodes,meshM with 133,546elementsand69,295nodes
andmeshSwith 76,497 elementsand40,197nodes.Figures14 and15 showtherelationbetweenthe
number of processorsand the speed-up ratio andefficiency of parallelization respectively. In these
figuresthe speed-upratio andefficiency canbe definedas

speed-up ratio �

computational time for one PE
computational time for N PEs

�30�

efficiency �

speed-up ratio
N

; �31�

where N denotes the total number of processors.From these figures it can be seen that the
performanceis improvedin accordance with anincreasein thedegreesof freedomandtheefficiency
is decreased in accordancewith anincrease in processors.In thecaseof thecomputationusing mesh

Figure10. Computedwaterelevation(contoursareevenlyspacedat 0�1 m intervals)
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L and512 processors,it canbe seenthat the speed-up ratio andefficiency reachapproximately 400
and80% respectively.

As an application of the stabilizedspace–time formulation, the tidal flow in Tokyo Bay hasbeen
simulated. This problem was analysedearlier using the three-step explicit schemedescribed in
Section 3.26 Herewe carryout thesimulationusingthe implicit formulation introducedin Section3.

The meshusedin the computationconsistsof 56,893elementsand60,210space–time nodes,as
shown in Figure16.Themesh hasbeendecomposedinto 256subdomains(which areassignedto the
individual CM-5 vectorunits)usinga recursivespectralbisectionalgorithm,asshownin Figure 17.
The meshrefinement is relatedto the water depth,shown magnified 100-fold in Figure18. In this
simulationa time stepsizeof 60 s is chosen andthetotal durationis 1600time steps,approximating

Figure11. Computedwaterelevationat 1 h intervals (contoursareevenlyspacedat 0�1 m intervals)
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Figure12. Computedcurrentvelocity at time 22:00

Figure13. Comparisonbetweencomputedandobservedwaterelevationat Nagoya

Figure14. Comparison of speed-upratios
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Figure15. Comparisonof efficiencies

Figure16. Finite elementdiscretization of Tokyo Bay

Figure17. Meshpartitioningfor 256 processors
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Figure19. Computedwaterelevationat t�15:00h

Figure20. Computedwaterelevationat t�18:00h

Figure18. Waterdepthview of Tokyo Bay
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one24 h period.At the oceanboundary a diurnal tidal waveis imposed with anamplitudeof 0�5 m
and a period of 12 h. The following parametersare used:n � 0�03; Al � 5 m2 s71, C1 � C2 � 0.
The stormsurgeterm(3) is ignoredin this problem.The resultingelevationis shownin Figures19–
22,magnified 50,000timeswith respectto thehorizontal dimensions,at times t� 15:00, 18:00, 21:00
and24:00h into thesimulationrespectively. Thesimulationwasperformedon a 64-node CM-5 with
256 vectorunits andtook 8�5 h of computer time to complete.

6. CONCLUDING REMARKS

A three-stepexplicit finite element solverand an implicit stabilizedspace–time formulation of the
shallow water equations, applicable to unstructuredmeshcomputations of storm surgesand tidal
flows, havebeensuccessfully implementedon the massively parallel supercomputersAP1000 and
CM-5 respectively. The explicit method has been applied to the analysis of the storm surge
accompanying the Ise-Bay typhoon in 1959. The efficiency of the parallelization has been
investigated and the computed results have been compared with the observed results. The
performanceandefficiency wereobserved to improve linearly in accordancewith an increase in the
numberof degreesof freedom.The implicit methodhasbeenusedto computethetidal flow in Tokyo

Figure22. Computedwaterelevationat t�24:00h

Figure21. Computedwaterelevationat t�21:00h
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Bay. From the resultsobtainedin this paper, it canbe concluded that the presentedmethodcanbe
successfully appliedto large-scalecomputations of storm surgesandtidal flows.
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