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SUMMARY

Massively parallel finite element methods for large-scale computation of storm surges and tidal flows are
discussed here. The finite element computations, carried out using unstructured grids, are based on a three-step
explicit formulation and on an implicit space—time formulation. Parallel implementations of these unstructured
grid-based formulations are carried out on the Fujitsu Highly Parallel Computer AP1000 and on the Thinking
Machines CM-5. Simulations of the storm surge accompanying the Ise-Bay typhoon in 1959 and of the tidal flow

in Tokyo Bay serve as numerical examples. The impact of parallelization on this type of simulation is also
investigated. The present methods are shown to be useful and powerful tools for the analysis of storm surges and
tidal flows. (C)1997 by John Wiley & Sons, Ltd.
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1. INTRODUCTION

Storm surges is a phenomenon in which the sea level in a near-shore rises significantly because of the
passage of a typhoon or low atmospheric pressure. This can cause enormous damage in major bays
and harbours. Tidal flows in ocean bays are less violent, yet their understanding is also important to
the design of shoreline and offshore structure. For the study of storm surge, computations were
carried out in the past by some of the present authors and also other reseafchietsl. flow
simulations were previously reported in References 3 and 4. The finite element method is a powerful
tool in such simulations, since it is applicable to complicated water and land configurations and is
able to represent such configurations accurately. In practical computations, especially in the case of
storm surge analysis, the computational domain is large and the computations need to be carried out
over long time periods. Therefore this type of problem becomes quite large-scale and it is essential to
use methods which are as efficient and fast as the available hardware allows.

In recent years, massively parallel finite element computations have been successfully applied to
several large-scale flow problerisThese computations demonstrated the availability of a new level
of finite element capability to solve practical flow problems. With the need for a high-performance
computing environment to carry out simulations for practical problems in storm surge analysis, in this
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1372 K. KASHIYAM A ETAL.

paperwe preent and emgoy a parallel explicit finite element methodfor computatios basedon
unstuctured grids. Thefinite elemen computatioss arebasecon a three-ste expiicit formulatior? of
the govemning equatias. In thesecomputationswe usethe selecive lumping techniquefor numeical
stebilization. Parallelimplemenation of this unstructued-gridbasedormulationis cariied outonthe
Fujitsu Highly Paralel Compuer AP100. As a teg problem we carty out simulaion of the stom
surge accompaying the Ise-Bay typhoonin 1959. The computel resultsare conparedwith the
obsevedresuts. The effectof pardlelization on the efficiencyof the computationsis alsoexamnined.
The computdion of the secom classof problens, involving tidal flows, is accomplifiedherewith
a stabilized implicit finite elementmethodbasedon the consevation variables. This stabilization
methodis basedon the streamIineupwind/Petlov—GaIerk'n (SUPG) formulation for compressilte
flows, which wasoriginally introducedin References for incompresible flows andin Referencer
for the Euler equaions of compressibleflows. This methoddogy was later supplenentedwith a
disoontinuity-capturingtermin Refelences8 and9 andthenextendtdin ReferenceslOand11to the
Navier—Stkes equations of compresible flows. The time-dependentgovening equatons are
disaetizedusing a space—tine formulaion developedor fixed domainsin Reference 12 and13and
for deforming domainsin Referencel4. The presentdata-paallel implementation makes no
assunptions aboutthe strucure of the computatioral grid andis written for the Thinking Machines
CM-5 supercomuter. As a testproblem, simulaion of the tidal flow in Tokyo Bay is carried out.

2. GOVERNING EQUATIONS

The stormsurgephenomenaanbe modelled using the shallowwaterequatims, which areobtaned
from the consevation of momentumandmassyerticaly integrate, assummg a hydrogatic presure
distribution:

iy =5, 45 B = i, ), = )

CH A0 ], =o, )

where u; is the meanhorizontal velocity, C is the water elevaton, h is the water deph, g is the
gravitational acceleation, {; is the increag in water elevation correspading to the atmosjheric
presure drop, (T7,); is the surfaceshearstress,(T,); is the bottom shearstressand V is the eddy
viscosity. The increag CO canbe given by Fuijita’s formula'® as

= B ®)
1008 \/{1 +(r/”0)2]
where v is the pressuredrop at the centreof the typhoon, pis the densityof fluid, r is the distance
from the centreof the typhoonandr, is the radiusof the typhoon.
The surfaceshearstresscan be given as

(Ts)i :pa'))wi\/(wkwk)’ (4)
where p, is the densityof air, ) is the drag coefficientand w; is the wind velocity 10 m abovethe
water surface. The wind velocity canbe evaluaed using the expressions

_Cl ‘ {sin qxl _(xl)c] +-cos 6{x2 _(xz)c]} +C, Vle_(r/R)ﬂa (5)
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COMPUTATION OF STORM SURGESAND TIDAL FLOWS 1373

where 7, is the gradientwind velocity, 7, and 7, denotethe velocity of the typhoon,(x, ), and(x, ),
denot the postion of the typhoon, @is the gradientwind angke andR, C, andC, areconsants.The
gradientwind velocity is defineas

—3/2
_f|_ 4 7\
=l e | : ()
where f is the Coridlis coeficient.
The bottom shearstresscan be given as
I’lzg
(%), B “i\/(“k“k), ®8)

where n is the Manning coefficient.

3. VARIATIONAL FORMULATIONS

We presenttwo finite element formulaions of the shalow water equatims which have been
implementedon pardlel architectures.The first methodis a three-stp explicit methodfor fixed

domans. The secondnethodis animplicit stabilizedspacetimeformulation. Althoughthe examples
presntedin this paperinvolve fixed domans only, the latter (space-itne) formulation is seenasa

step towards solvinganimportantclassof problens which involve deforning domains With thetwo

formulations included in this secton addressing different classesof problems,a Cost/accuracy
comparisonis not performed;however, it is expeded that the explicit methodfor a given time step
size will be more economcal thanthe spacetime formulaion if the doman is fixed. The implicit

spacetimeformulation, onthe othe hand,doesnotinvolve asmuch time stepsizerestriction (dueto

numeical stability) asthe explicit method.

3.1. Three-S¢p Explicit Finite ElementMethod

For the finite element spatid discretzation of the govemning equaions the standard Galekin
methodis used.The weakform of the governingequationscanthen be written as

e _ @) _ @)
JQ up | u; +”jui,j +g(C gﬂ),i + p(h -H:) p(h +O)
+ JQ Mo, )] dQ— Jr urtdl=o0, ©)

JQ G0+ }aQ=0, (10)

where u¥ and C* denoe the weighting functionsandy, representsbounday temms.
Using the threenodelinear triangular elementsfor the spatid disaetization,the following finite
elementequatiams can be obtaned:

Mogigy ~+Kopyufey +Hos Coﬂ”%(g%% Toﬁ(ﬁs—l@)ﬁmﬁuﬁ =0, (11)

Mg+ Bty +5) - Copprpy +) =0. (12)

(©1997 by JohnWiley & Sons,Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1371-13891997)



1374 K. KASHIYAM A ETAL.

The coefficient matrix canbe expressé as

Mo = J Q. Ky = J RO, 40
Hyy =g JQ D dy,dQ T = JQ B DQ
Ssify :vJQ ®%i®5,de+VJQ (I)O,,k(I)ﬂk(Slde

By :JQ DDy, D) Copy :JQ DD, a2

where @ denotesthe shapefunction. The bottom stressterm is lineatized and the water depthis
interpolatedusing linearinterpolaion.
For disaetizationin time the threestepexplicit time integration schemeis employel using the

Taylor seriesexpansion
FA) =F()+ AtaF(t) &2 azF(t) & w(f) o) )

where F is anarbitrary function and/V is thetime increment Using the appraximate equaton up to
third-orderaccuracy the following threestepschene can be obtaine:'®

r(4) R0

(t JA) NLET) )
F+A) =r () + A TCEAR),

Equation (14) is equivakntto equation (13) andthe methodis referredto asthe threestepTaylor—
Galekin method.The stability limit of the methodis 15 timeslargerthanthat of the convertional
two-step schemé’*” Details of this methodare given in Refeence3. Applying this schemeto the
finite element equatims, the following discretzed equatimsin time can be obtaned:

Stepl
n n At no.n " n b ! '
(@)
T (ﬂh‘m)ﬁ“wﬁuﬁ 15)
" n A‘ n n n
Mgl =My = oy +8) + Copat by + 8, (1e)
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Step2
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where supersdpt n denotesthe value computedat the nth time point and / is the time increnent
betwea the nth andthe (n —I—l)th step The coeificientMoL(ﬁ expressethe IumpedcoefficientandMoS(ﬁ
is the sekctive lumping coeficient given by

Mg =eMyg~+(1 —e)M,g, (1)

where e is the sekctive lumping paraneter.

3.2. Space-ime Implicit Finite ElementMethod

In the implicit implementation a stahlized spacetime finite elementmethodis used.Using the
consevative variables definedas

U, H
U= U2 == Hul N
U3 Huz

where H =h —I—C, the variationalformulation of (1) and (2) is written as
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1376 K. KASHIYAM A ETAL.

Here U* denoesthe weighing function andthe integration takesplace over the space—tine doman
(or its subsetreferredto asslal) Q,, its lateralboundaryP, andits lower spatal boundary€),. The
spacetime terminology is explainedin more detail in Referencel8. A; andK;; are the coefficient
matricesof the advedive—diffusive sysem, definedas

( 0 1 0 0 0 1
A =|-U}H?+gH 200/H 0 |, A=| —uvu/H* UJ/H U/H |
\ —UU,/H*  U,/H U JH —U2/H*+gH 0  2U,/H
0 0 0 0 0 0
K, =|—=2w,/a*> 2v/H 0 |, K, = 0 o o |
—U,/H* 0 V/H =, /H> V/H 0
( 0 0 0 0 0 0 \
Ky, =| 2U,/H> 0 V/H |, Ky, =| 2U,/H*> v/H 0 |
0 0 0 —2VU,/H* 0 2V/H )
R denotesthe right-hand-sile vector
0
R=| —zHdh+{)/& —@)/p+()/p (24)

—gHdh +()/d, —(3,),/p+(.), /p

andH is the natual bounday condition term definedon the subsetof the lateral boundary P,,. The
notation (...)} and(...), indicat the valuesof a discontnuous variable asthetime t apprachesthe
tempoal slabbounday ¢, from aboveandbelow respectivéy.

The first two left-hand-si@ terms and the entire right-handside of equatio (22) consttute the
Galekin form of the shallow water equations(1) and (2). The third term enforcesweakly the
continuity of the solution acress the time leves ¢,. The fourth and fifth terms are the SUPG
stabilization and discontinuty-capturingtermsresgectivdy. For the derivaion of the stabilization
coeficients T and 0 for multidimensioral advedion—diffusive systens seee.g. Referencell. The
stebilization termsare integratel over the interior of the spacetime elementsQ¢.

The variablesand weighting functions are discretizedusing piecewse linear (in both spaceand
time) interpolation functions spacedor all fields. The resultingnon-linearequaton systemis solved
using the Newton—Raphen algarithm, whereat eachNewton—Raphen step a coupledlinearequaton
sysemis solvediteratively usingthe GMRES updatetechniqie.

4. PARALLEL IMPLEMENTATION

For the explicit algarithm a data-paallel implementationis perfaomedon the Fujitsu AP100, which
is a distributed memow, highly pardlel conmputer that supportsthe communication mechaném.
Figure 1 shows the configumation of the AP10M system The AP10M consistsof 1024 processing
elementswhich are called cells, a Sunworkstation which is called the hostand threeindependen
netwoks which arecalled the T-net,B-netandS-net.Each cell possesseamemoy of 16 MB. Using
1024 cells, the peak conmputational speed reaches 8-53 Gflops The cells perform pardlel

computation synchponizing all cells and transerring bounday node datato neighbouing cells.
The hostperformsinstitution of cells’ environnent, credion of task,transferof dataandobservabn
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T-Net

Figure1l. AP1000system

of cells’ condtion. All cells are connectd by the T-net (torus netwok) for one-toene
communicdion betweencells. The hostandcells areconneted by the B-net (broadcating network)
for broadcastcommurication, distribution and colledion of dataandby the S-net(syndronizaton
netwok) for barriersynchonization.The commurication andsynchronkation mentionedabovecan
be realizedusing the vendor-spplied parallel library.*°

To minimize the amaunt of interprocessorcommurication, the autanatic mesh deconposer
preentedby Farhat® is employed For eachsubdoman the processoassocigedwith thatsubdonain
carries out computationsindependatly, exchangingonly the subdonain bounday datawith the other
Processors.

The finite elementequaion canbe expresse as

MX =F, (25)

where M is the lumpedmassmatrix, X is the unknown vectorandF is the known vector. Figure 2
shows an exampk mesh,with the brokenline denotingthe bounday of a subdonain. Elemens (1)—
(4) belong to domainl (processr 1) andelementq5) and(6) belongto subdonain 2 (processor2).
The unknown values X are solvedby

X =F/M (26)

No interprocessorcommurication is heededto compute the unknown valuesof a node which is
locatedin the subdomai interior, suchasnodeA. However,in the caseof nodeB, which is located
ontheboundaryof subdonains,interprocessocommunicaion is needel andthe following procelure
is appled. First the following valuesare computedin eachprocessor:

Mgy =My(s) +Mp(),  Far =Fag) TFp@)  (processor 1), @7)

My, =Mpy(s) +Mp), Fgo =Fg(s) TFp) (processor 2). (28)

Next thesevaluesaregatreredusingthe commurication library, thenthe unknown valuesof nodeB
canbe obtaned by

Xg =(Fg, +FB2)/(A:IB1 +A_4B2)' (29)

Datatransferis performedat every time step (seeFigure 2). As the lumpedmassmatrix M remains
consantthroughoutall time step,the datatransferof that matrix is requiredonly once.

The implicit algorithmis implementedon the ComectionMachine CM-5. Similary to the Fujitsu
AP100, the CM-5is also a distribued memoy, pardlel macine,with asinglepartitionsizeof up to

(©1997 by JohnWiley & Sons,Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1371-13891997)
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Figure 2. Parallelimplementatio

512 processig elemants (PEs)and a Sunmultiprocessohostmachine.The PEsareinterconnected
throughfat-treedata,control anddiagnosticnetworks.EachPE mamages32 MB of memol andhas
a peakprocessingspeedodf 128 Mflops, for atotal peakof over 65 Gflops As onthe AP10®, highly

optimized commurication utilities are available, groupedin the Connectim Machine Scientific
Sdtware Library (CMSSL). The implementation of the implicit algorithm descriked in Section3

follows closel the finite element implementation of the Navier—Stkes equatians which havebeen
descibed in Reference 21 and 22.

5. NUMERICAL EXAMPLES

As anapplcation of thethreestepexplicit algorithm simulation of the stormsurgein Ise-Bay, Japan
acconpanyingthe Ise-Bay typhoonin 1959is carried out. This typhom occurredon 22 Septemier
1959 and was the gredest disaser everto hit the Ise-Bay district. Over 5000 peoplewere killed

becawse of this storm surge.Figure 3 shows the configuiation of the domain and the path of the
typhoon. Figure 4 shows the finite element disaetizaion used.The total numbersof elements and
nodesare 206,977and 106,577 respedwely. This med is designedto keepthe element Courant
numker constantin the entire domain??*Figure 5 showsthe waterdepthdiagram. From Figures 4

0 200 400km
9/27 5:00 | S I

9/26 18:00

9/26 0:00

9/25 0:00

9/22 16:00

i

Figure 3. Computatbnal domainand path of Ise-Baytyphoon
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Figure4. Finite elementdiscretizatio

Figure 5. Waterdepthdiagram(contoursare evenly spacedat 500 m intervals)

INT. J. NUMER. METH. FLUIDS, VOL 24: 1371-13891997)

(©1997by JohnWiley & Sons,Ltd.



1380 K. KASHIYAM A ETAL.

:1-"5%5:% o
S
AR DAREERS)
SIS SORORFE
O A VAN by "‘N}
SR
AV Sy
AN

Figure 6. Finite elementdiscretizaion aroundlse-Bay

and5 it canbe seenthat an apprqriate meshin accordane with the variation in water deph is

realized.Figures6 and7 showthe finite element disaetizationandwaterdepthdiagramarourd Ise-
Bay respedtely. A fine mesh which represatsthe geometryaccuatelyis employed Figure8 shows
the meshpartitioning for 512 processorsThe typhoon datasuchasits postion, speedandpower are
given at1 hintervals Usingthes data,thewind velocity canbe computel at everytime step.Linear
interpolation is usedfor the data interpolation. For the boundary condition the no-slip bound-
ary condtion is appliedto the coastine and the openbounday condtion is appliedto the open
bourdary. For the numerical condtion the following data are used: n =0-3,4, =
10 m?* s, C, =C, =06, R =500 km, r, =60 km. The selectivelumping parameterand the time

increment areassumedo be 0-9 and 6 s resgectively. Figure 9 showsthe pathof the typhoons;the
numealsdenot the time andpositionof the typhom. Figure 10 shows the computel waterelevaton

Figure 7. Water depthdiagramaroundlse-Bay(contoursare evenly spacedat 10 m intervals)
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Figure 8. Meshpartitioning for 512 processors

at times 17:00and 24:0Q Figure 11 showsthe computedwater elevaton at 1 h intervals It canbe
seenthatthe waterelevaton variesaccordng to the movementof the typhoon. Figure 12 shows the
computed current velocity at time 22:00 and the complicaed flow pattern. Figure 13 shows the
comparisonof waterelevationbetwea the computedandobsevedresult$® at Nagoyalt canbeseen
that the computel resdts arein goad agreementwith the obsewved restlts.

24

23

Nagoya

13 (hour)

Figure 9. Pathof typhoon
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17:00

24.00

Figure 10. Computedwater elevation(contoursare evenly spacedat 0-1 m intervals)

In orderto checkthe performanceof the pardlelization, threefinite elementmeshesareemploye:
med L with 206,977 elemantsand106,577nodesmeshM with 133,546elementsand69,295nodes
andmeshS with 76,49 elemantsand40,197nodes Figures14 and15 showtherelationbetweerthe
numter of processorsand the speedup ratio and efficiengy of paralleization resgectivdy. In these
figuresthe speed-upratio and efficiengy canbe definedas

computational time for one PE (30)

speed-up ratio = - -
computational time for N PEs

d- ti
efficiency :w , (3 1)

where N denoges the total number of processors. From thesefigures it can be seenthat the
performancds improvedin accordane with anincreasdn the degree®f freedomandthe efficiengy
is decrease in accodancewith anincrea® in processors.in the caseof the computationusing mesh

INT. J.NUMER. METH. FLUIDS, VOL 24: 1371-13891997) (©)1997 by JohnWiley & Sons,Ltd.
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Figure 11. Computedwaterelevationat 1 h intervak (contoursare evenly spacedat 0-1 m intervals)

L and512 processors,t canbe seenthat the speedup ratio and efficiencgy reachappraimately 400
and 80% respectively.

As an applicaton of the stabilizedspacetime formulation, the tidal flow in Tokyo Bay hasbeen
simulated. This problem was analysedearlier using the threestep explicit schemedescrited in
Secton 3.2° Herewe carry out the simulation usingthe implicit formulationintroducedin Section3.

The meshusedin the computationconsistsof 56,893elementsand 60,210space—tine nodes,as
shown in Figure16. The mes hasbeendeconposedinto 256 subdomans (which areassignedo the
individual CM-5 vectorunits) usinga recursivespectralbisectionalgorithm,asshownin Figure 17.
The meshrefinementis relatedto the water depth,shown magnified 100-fold in Figure 18. In this
simulation a time stepsizeof 60 s is chos@& andthe total durationis 1600time stepsapproaimating

(©1997 by JohnWiley & Sons,Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1371-13891997)
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Figure 12. Computedcurrentvelocity at time 22:00
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Figure 13. Comparisorbetweencomputedand observedvater elevationat Nagoya
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Figure 14. Compaison of speed-upatios
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Figure 15. Comparisorof efficiencies

Figure 17. Mesh partitioning for 256 processors
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Figure 18. Waterdepthview of Tokyo Bay

Figure 20. Computedwater elevationat t =18:00h
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Figure 22. Computedwater elevationat t =24:00h

one 24 h period. At the oceanbounday a diurnaltidal waveis imposal with an amplitudeof 0-5 m
and a period of 12 h. The following paranetersare used:n =0-03,4, =5 m?* s, C, =C, =0.
The stormsurgeterm (3) is ignoredin this problem.The resultingelevationis shownin Figures19—
22, magnified 50,000times with respectto the horizontl dimensons,attimest =15:0Q 18:0Q 21:00
and24:00h into the simulationrespedtely. The simulationwasperformedon a 64-nod CM-5 with
256 vector units andtook 8-5 h of computertime to complete.

6. CONCLUDING REMARKS

A three-stepexplicit finite element solver and an implicit stabilizedspace—tine formulation of the
shalow water equatias, applicéble to unstuctured meshcomputatiors of storm surgesand tidal
flows, have beensucceasfully implementedon the massivey parallel supercompters AP10®M and
CM-5 respectively. The explicit method has been applied to the analyss of the storm surge
acconpanying the Ise-Bay typhoon in 1959. The efficieney of the pardlelization has been
investigated and the computed results have been comparel with the observedresults. The
performanceand efficiency were obsewed to improve lineally in accodancewith anincrea® in the
numter of degreesof freedom.The implicit methodhasbeenusedto computethetidal flow in Tokyo

(©1997 by JohnWiley & Sons,Ltd. INT. J. NUMER. METH. FLUIDS, VOL 24: 1371-13891997)



1388 K. KASHIYAM A ETAL.

Bay. From the resultsobtainedin this paper it canbe concluded that the preentedmethodcan be
succasfully appliedto large-scalecomputadions of stom surgesandtidal flows.
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